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The theory of electromagnetic surface modes propagating along the planar interface between dusty electron-
positron plasma and vacuum is reexamined by the conventional matching method of boundary conditions. It is
shown that in a magnetoplasma the direct use of specular reflection method is not appropriate and the deriva-
tions for the TM-mode dispersion relation[Phys. Rev. E61, 4357(2000)] are incorrect.
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I. INTRODUCTION

Recently, Choet al. [1] published a paper dealing with
nonrelativistic electromagnetic surface modes in a magne-
tized dusty electron-positron plasma. Surface wave propaga-
tion in a magnetized dusty plasma was previously investi-
gated by many authors(e.g., see Refs.[2–4]). They dealt
with the problems by the matching method of boundary con-
ditions. Cho and Lee previously studied an unmagnetized
plasma by employing both a matching and specular reflec-
tion method[5] and they showed there that both methods
lead to the same results. Our objective here is to show that
under the reflectionx→−x, vx→−vx the governing equaions
in Ref. [1] do not remain invariant so that the use of the
specular reflection procedure in a magnetized plasma is in-
correct. The error of Choet al. is due to the application of
the specular reflection method. We derive the correct disper-
sion relation by the matching method of boundary conditions
to distinguish with that in Ref.[1]. We also derive the ex-
pressions for the current components correctly to show that
the similar results obtained in Ref.[1] are wrong.

II. FLUID MODEL AND BASIC EQUATIONS

The same fluid model is used as in Ref.[1], which con-
sists of the momentum and continuity equations for electrons
and positrons as well as Maxwell equations not ignoring the
electron inertia and displacement current. The negatively
charged dust grains which can effectively collect the elec-
trons and positrons from the background are considered to be
point charges and their sizes are assumed to be much smaller
than the electron Debye length and the distance between the
plasma particles. In the steady state we have

n0+ = n0− + Zdnd0, s1d

where the subscript “0” stands for equilibrium number den-
sity for a species(a= + ,−, andd for positron, electron, and
dust). The parameterd=n0−/n0+ measures the charge imbal-
ance in the plasma, with the remainder of the charge residing
on the dust particles, so that the total system is charge neu-

tral. We assume for simplicity that the charge on the dust
grains is not affected by the wave; i.e., we neglect the dust
charging effects[6,7]. Now assuming the plasma to occupy
the half spacex.0 bounded by vacuumx,0 with the pla-
nar sharp interface atx=0, the external magnetic fieldB0
along thez axis and the time dependence,exps−ivtd we
have the basic equations

vWa =
iv

v2 − Va
2F qa

ma

EW +
iVaqa

mav
EW 3 ŷG , s2d

na =
n0a

iv
¹ ·vWa, s3d

¹W ·EW = 4pesn+ − n−d, s4d

¹W 3 EW =
iv

c
BW , s5d

¹W 3 BW = −
iv

c
EW +

4pe

c
sn0+vW+ − n0−vW−d, s6d

where the subscripta stands for electron(2) and positron
(1). Other notations are standard. First we wish to derive the
dispersion relation for TM surface modes by the conven-
tional matching method of boundary conditions.

Taking curl of Eq.(6) and using Eq.(5) we obtain

Sc2¹2 + v2 −
v2svp+

2 + vp−
2 d

v2 − V2 Dŷ ·¹W

3EW +
ivV

v2 − V2svp+
2 − vp−

2 d¹W ·EW = 0, s7d

whereV=eB0/cm is the cyclotron andvps+,−d are the plasma
frequenciessm+=m−=md. From Eqs.(4) and(5) eliminating

BW using Eq.(2) we obtain

sv2 − V2 − vp+
2 − vp−

2 d¹W ·EW =
iV

v
svp+

2 − vp−
2 dŷ ·¹W 3 EW .

s8d

Equations(7) and(8) are two coupled equations for our mag-
netized plasma, which give the wave equation
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fsc2¹2 + v2ldl − L2gSŷ ·¹W 3 EW

¹W ·EW
D = 0. s9d

Here

l = 1 −
vp+

2 + vp−
2

v2 − V2 ,L =
Vsvp+

2 − vp−
2 d

v2 − V2 .

Assuming the wave fields to vary as expsikz− ivtd we have,
from Eq. (9),

ŷ ·¹W 3 EW ; ikEx −
]Ez

]x
= H A1e

a1x sx , 0d,

A2e
−a2x sx . 0d,

J s10d

¹W ·EW ; ikEz +
]Ex

]x
=

iVsvp+
2 − vp−

2 d
vsv2 − V2dl H A1e

a1x sx , 0d,

A2e
−a2x sx . 0d,

J
s11d

where

a1 = Sk2 −
v2

c2 D1/2

, a2 = Sk2 −
v2l

c2 −
L2

c2l
D1/2

. s12d

Equations(10) and (11) are the simultaneous equations for
Ex andEz giving

Ez =5 Sa1 +
kL

vl
D A1

k2 − a1
2ea1x sx , 0d,

S− a2 +
kL

vl
D A2

k2 − a2
2e−a2x sx . 0d.6 s13d

Clearly, we need two boundary conditions to determine two
integration constantsA1 and A2 which are the continuity of

the tangential component ofEW as well as the normal compo-

nent ofBW across the interface—i.e.,

sid Ezsx = 0+d = Ezsx = 0−d,

sii d Bysx = 0+d = Bysx = 0−d.

Thus the above boundary conditions lead to the following
dispersion relation for surface TM modes in a dusty electron-
positron magnetoplasma:

sa1 + a2dfvsa1a2 − k2dl + kLsa2 − a1dg = 0. s14d

It is straightforward to show that the first factor of Eq.(14)
must be nonzero, whereas equating the second factor to zero
we have

FSK −
v̄l̄

d
+

L̄2

l̄
D1/2SK −

v̄

d
D1/2

− KGl̄Îv̄ + L̄ÎK

3FSK −
v̄l̄

d
+

L̄2

l̄
D1/2

− SK −
v̄

d
D1/2G = 0. s15d

Here we have used the following dimensionless parameters

K = c2k2/vp−
2 , v̄ = v2/vp+

2 , V̄ = V2/vp+
2

d =
n0−

n0+
, l̄ = 1 −

1 + d

v̄ − V̄
, L̄ =

s1 − ddÎV̄

v̄ − V̄
.

By making the correspondenceV̄→0,vp+→0,d→1 one
can recover the dispersion relation(29) in Ref. [5] for an
unmagnetized cold electron plasma. The dispersion relation
(15) as obtained by the conventional matching method of
boundary conditions is not identical with that in Ref.[1]
obtained by the specular reflection method. In the following
section we explain how the specular reflection procedure
fails for a magnetized plasma and adopt some correct deri-
vations to show that the results shown to obtain the disper-
sion relation in Ref.[1] are incorrect.

III. DISCUSSION

Here we first show that the corresponding derivations in
Ref. [1] are incorrect. From the linearized momentum and
continuity equations(Eqs.(9) and(10) in Ref. [1]) we obtain

vax =
iqav

masv2 − Va
2d
SEx − i

Va

v
EzD , s16ad

vaz =
iqav

masv2 − Va
2d
SEz + i

Va

v
ExD , s16bd

na =
n0a

v
kW ·vWa. s17d

Substituting the above velocity expressions in the current

JW =oqanavWa we easily obtain

Jx =
iv

4psv2 − V2dFsvp+
2 + vp−

2 dEx −
iV

v
svp+

2 − vp−
2 dEzG ,

s18ad

Jz =
iv

4psv2 − V2dFsvp+
2 + vp−

2 dEz +
iV

v
svp+

2 − vp−
2 dExG ,

s18bd

for the current components responsible for the electromag-
netic (em) wave. Choet al.omitted the terms proportional to
V which arise due to the static magnetic fieldB0. They sim-
ply showedJx,Ex andJz,Ez without any reason. Expres-
sions (18a) and (18b) when substituted in the Fourier-
transformed Maxwell equations(see Eqs.(8a)–(8c) in Ref.
[1]) lead to the following system in matrix form:

1kx − kz v/c

j − l ckz/v

l j ckx/v
21Ez

Ex

By
2 =1

0

0

−
iac

pv
2 , s19d

where
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j = −
iVsvp+

2 − vp−
2 d

sv2 − V2dv
. s20d

Note that the termj arises due to the presence of the trems
proportional toV in the expressions forJx andJz [Eqs.(18a)
and (18b)] and which, in general, cannot be neglected in a
magnetized plasma. On the other hand, in absence of these
terms the matrix equation(21) simply becomes

1kx − kz v/c

0 − l ckz/v

l 0 ckx/v
21Ez

Ex

By
2 =1

0

0

−
iac

pv
2 . s21d

But in Ref. [1] as mentioned above, the expressions forJx
andJZ do not contain such terms proportional toV, yet Cho
et al. displyed their 333 matrix (Eq. (13) in Ref. [1]) erro-
neously with no zero term and incorrect elements in the(2,
1) (2, 2), (3, 1), (3, 2) positions. Furthermore, solving the
correct form[Eq. (21)] one can find after a straightforwrd
complex analysis(picking up the residue at the simple pole
kx= ih ,h=fkz

2−v2sj2+l2d / sc2ldg1/2) that

Bysx = 0+d = a +
iajkz

hl
, s22d

wherej is proportaional toV and it vanishes when there is
no external magnetic field, which shows that the normal
component of the magnetic field is discontinuous across the
interfacefBysx=0−d=ag. HereBy can be discontinuous only
when there is a surface current on the interface. A static
magnetic field alone can not give rise any physical mecha-
nism to produce such surface current. This is also clear from
the fact that if we use the divergence theorem on the Max-

well equation ¹ ·BW =0, we would always haveBysx=0+d
=Bysx=0−d. Thus, we arrive at the absurd result. That is, the
direct use of the specular reflection procedure in a magne-
tized plasma is not appropriate. It is now straightforward to
show that under the reflectionx→−x,vx→−vx Eq. (16a)
does not remain invariant, becauseEzs−xd=Ezsxd and
Exs−xd=−Exsxd (see Eq.(7) in Ref. [1]). This violation is due
to the term proportional toV that omitted in Ref.[1], and
that can be removed in an unmagnetized case[5].

IV. CONCLUSIONS

In our above analysis we have reexamined the results ob-
tained in Ref.[1] by employing the conventional matching
method of boundary conditions. We have shown that under
the reflection the governing equation(2) does not remain
invariant and as such the specular reflection procedure fails
in such a magnetized plasma. In Ref.[1] the authors used
this approach in the magnetized case without checking the
invariance of the governing equations under the reflection,
which we have shown finally led to erronious results. We
have also demonstrated that the derivations for the TM dis-
persion in Ref.[1] are incorrect. The correct form of the
dispersion relation is derived which is in good agreement
with that in Ref. [5] for an unmagnetized cold electron
plasma case. The different mode of propagation can be ana-
lyzed by solving our dispersion relation(15) both analyti-
cally and numerically, which will be communicated in the
near future.
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